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i THE WEAK ~ ONVERGENCE OF A ~EQUENCE OF QENERA L . rOCHA 7”~
_________ DIFFERENCE EQUATIONS TO A DIFFUSION/

I H. J.fKushner —

~! ~~~~~~~~~~~~ 

Hal/Huang 
_ _ _ _ _ _ _

A convenient and useful method for showing weak convergence, to a

diffusion , of the interpolated solutions of a (not necessarily

1 Markovian) sequence of stochastic difference equations is developed.

~ 1’ The technique involves the use of averaging methods to show that the

weak limit satisfies the martingale problem of Strook and Varadhan which

is associated with the diffusion . A truncation method is developed so

I- - 
that it is only necessary to work wi th the par ts of the process before
first escape from an arbitrary but bounded domain. The assumptions

cover a wide variety of applications in systems theory , mathematical biology and

elsewhere but the method of proof is adaptable to other special cases where our

particular assunptions might not hold. Two applications are given in order to

illustrate the relative ease of use of the method. The driving noise

I’ process in the difference equations can depend on the solution

1 

~~~

. process of the difference equation , and one app lica tion where this

is useful is given (a rate of convergence prob lem for simple

~ 
stochastic approximations with sequentially averaged observations). —
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k,si~iibflity Cod.s 1. Introduction• L £vsilaud/or

Dist. p.c al

• II The paper develops a general method for proving weak convergence

to a diffusion process of the sequence of appropriate1~ scaled and

interpolated solutions to the (not necessarily Markovian) equation

I I • 

(1.1) X~4.1 = X~ + ch
~

(X ,ñ + /~ g~ (X~ ,~~) + o(€), X~ C Rr,

X~ given.

1. The {
~~

} are a sequence of random variab les whose dis tribu tions

might depend on the {X }. The method is convenient to use and has
1. wide applicability. In order to illustrate the use of the method,

• applications to the rate of convergence for a general form of

stochastic approximation and to a problem of Guess and Gillespie (1]

are treated. For the latter problem , the treatment in [1] required

• an explicit construction of the solution - essentially limiting the
• - treatment to the scalar case. There is no such restriction here.

Define X C ( )  by X C(t) X~ on (nc ,n€ + c) . The basic idea

• 

• 

is to prove that {X (~
)} converges weakly to the solution of the

• • 
martingale problem [2] connected with the diffusion process. In recent years

many nice results for dealing with weak convergence of a sequence

1. of non-Markov continuous parameter processes to a Markov process

have been developed (3)-[5), but the discre te param eter case is no t

in such good shape.

• The basic backgre~md theorems are in [6] where some “continuous parameter”

applications are given. That reference emphasizes the continuous

parameter case. But the method is often easier to use and can

1~ 
handle many types of interesting problems in the discrete parameter

I.

UI 
___________________________________
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, case , and here we show how to effectively use it for a broad class of

problems. The method of proof is interesting in itself and can be

I adapted to special cases when our assumptions do not hold. For each

C > 0 , let be an increasing sequence of a-algebras which measures

I {X C(s) ,  $ < t } and E~ the corresponding conditional expectation operator.

I 
• Wri te 

~~~ 
- E~. Let denote the measurable functions f(.) (of

(W ,t ) )  which are constant on the [nC ,nc+e) intervals and

measurable at time t, and satisf y sup E I f ( t ) I <~~~ . Let ?(.) €
— t>0

If sup E~f~(t)~ < and lim E I f ~ ( t ) I  = 0, for each t, we say
I t~OI

(following the terminology in [3], [6]) that p-u rn f ( )  = 0. Define
I

A~~~on~~~~~~~

1 ‘ €  CA f ( t )  = [E
t

f ( t + C) - f ( t ) ] / € .

is an approximation “in some sense” of the weak infini.te~ijnal operator of the

• I limit process.

Reference [3) contains a very interesting method for the
I continuous parameter case , with some remarks on how it mi ght be used

for the discrete parameter case. The method here seems easier to use
and it is easier to construct the perturbation (f ~ ( • ) }  with out method.

• I Some of our results were strongly motivated by the techniques in [3].

- Section 2 contains some as sumptions on the limit process , and
1. a sequence of truncated processes is introduced in Section 3.

The use of these truncated processes will facilitate the tightness proof ,
and ~. lows us to work only wi th X~ ( )  and the limit until the first

( escape time from an abritrary but bounded region. The general

background limit theorem and the tightness theorem from [6] are stated

F. in Section 4 in the form which will  be most useful to us. In Section 5,

1, 1
I • • —~~~~~~

—
~~~

-
~~~~~~~~~~~~~~ ~~~~•-~~~~• ~~--~~~~ -~~~~

-•-
~~~~~~ -- —
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specific assumptions for (1.1) are given when (~~J~} does ~~ depend 
L

on {X J~}, and the theorems of Se~~on 4 are applied to (1.1) in

Section 6. Sections 7 and 8 illustrate the general method with two

applications. The modifications when {
~~

) is {k~} dependent are

discussed in Section 9, and an application to the rate of convergence ~~~•

problem for a stochastic approximation with “averaged” observations
appears in Section 10. From a notational point of view, it is nuch siiçler to
treat the case of non-state-dependent noise first.

I
2. Assumptions on the Limit Process

Some assumptions on (what will be) the limit process is required.

Let ~ denote the real valued functions on R ’ X Rr which are
zero at °‘

~~~ 

the subset with compact support, and ~~~~~~~~~~~~~~~~ the

subset whose mixed partial (t,x) derivatives up to orders (a , 8)
2

are continuous. Let A = ~ b~ (x ,t)~~.— + 4 E a jj(x
~
t)ax~~x 

denote
,3 i i

a diffusion operator with continuous coefficients.

• Next, an existence and uniqueness condition is needed. Dr [O ,o) ~~ :

denotes the usual space [7] of Rr valued functions which have left
hand limi ts and are right continuous and with the Skorokhod topology.

• Let x() denote the generic element of Dr [O ,~ ). For each x € Rr,

we assume that there is measure ~~ Dr [O ,00) such that

P {x(O) - x} - 1 and

• 
~‘~1• (2.1) P {sup~x(tfl < = 1, each T < ~~~,X t (T

and which is the unique solution to the martingale problem of Strook
and Varadhan; namely, for each f (~ ,•) € ~~~~~~~~~~~~~~~~ and x € Rr, the
Mf(~ ) below is a 

~~ 
martingale:

• —-—-- — • ——— —-- •• •• - 
~~

--
~~~~~

- -• • 
~~~

•— 
•~
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1

1
- (2.2) Mf(t) — f(x (t),t) - f(x (0),0) - 

~ 
(fr + A) f (x(s) ,s) ds.

Hi  0

- I We work on DT (O ,co) rather than on C’[O ,c.) because it is easier

to prove tightness on the former space. The measure P is con-x
- 

- centrated on the subset of DT[O,°) of continuous functions, in any

r case. When the measure is given, the corresponding process solution

~ I to the martingale problem will be written as X(•) in order to

~ f 
distinguish it from the generic element x(~). We still have existence

- 

• 

and uniqueness if the initial value x is replaced by a random variable

t X(0). Below X(0) will be the weak limit of {X~}.

3. Truncated Processes

The idea of the proof in (6] is to first prove tightness and

1. then to show that all weak limits solve the same martingale problem

• ~~
- whose process solution X(•) is unique (in the sense of measure, of

course). To facilitate the proof of tightness, it is convenient to

I bound the random functions X~(.) and X(.) by altering them after

th~ first leave the sphere SN 
- {x: lx i < N} and stopping them

after first exit from SN+l. It is then proved that for each N the

sequence of XC(.) before first exit from SN converges weakly to the
• part of the diffusion • X(•) before first exit from 5N Finally , the

j uniqueness and (2.1) (i.e., infinite escape time for the diffusion) is

used to get that the unaltered X~(.) converge weakly to X(•) as

desired. Let ~~~~ denote a continuous function which takes the value

unity on SN , zero on RT - SN,l, has values in [0,1] and first and second

I

L. ~~~~~~~ 
• T ~~~~~~~~~~~~ J
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~~~1
derivatives uniformly bounded in x ,N. It is convenient to write

(1.1) in the slightly expanded form [
(3.1) )ç~4.1 X~ + CTi~(t) + /~ g~(X1~,F~) + €h~(X~,~~) + o(c)k~(X~~ 5, Li
where conditions on the fun~ions will be given below.

Let the subscript N denote multiplication by 
~~

(
~); i.e.,

- 
~~~~~~~~~~ etc. For each N, we define the truncated or

altered process x ,N by I
(3.2) X~~

N 
~~~ + di~ Nan ’ ) + ,‘E g~~~(]~~N,F~C)

+€h€ N (X
fl ,

~fl
) + o(E)k~~~()ç~PN,F~5,.

The sequence {X~
,N} equals {X} until at least the first

time that the latter exits from SN.
N . .Let A denote a diffusion operator of the form of A in

Section 3 and whose coefficients aN(•,
.) and bN(~

,
~

) are continuous r~,
,to . i t -

and equal a(.,•) and b(.,.), resp., in SN. Suppose that a process

• xN(.) solves (not necessarily uniquely) the martingale problem

corresponding to operator AN and (perhaps random) initial condition

xN (o) . If X1’
~(O) + X( 0) weakly , then we call xN(.) an

N-truncation of X(~ ), the unique solution of the mar tingale problem
for initial condition X(0) and with operator A. The terms

~~~~~~~~~~~~~~~~~~~ and 2rC,N are defined analogously to A~,
etc., but for the process X ‘ (~

) instead of the process X (.),
where xC~

1
~(.) is the piecewise constant (on the (n€ ,n€+c) intervals) inteTpolation [

of in particular xc,N X~’
1
~(ne). -

— •—•--—•---•— -•——•~~ —-—• .••—‘--—-—-- £.~•-• — — •-& —~•~‘~~ - ~•—•• •___ _•
~
•_ —— — ~~~~~~~ •!•• — — —
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4. The Limit Theorems

I Theorems 1 and 2 are taken from [6], but are rephrased for the

convenience of the class of problems dealt with here. In the follow-

I ing sections, they will be applied to (1.1) and (3.1).

In Theorems 1 and 2, {X~, ii > 01 is an arbitrary sequence

I for each c > 0, with interpolation denoted by X~ ( )  (X~(t)
X~ on (nc,n€+€)). It need not be defined by (1.1) or (3.1). The

{~ € ,1~) is any sequence such that x ,N x~ until at least the

I first exit time of {4} from SN. Part of our basic structure (e.g.,

- 

use of A and the perturbed £ ‘ ( .)  below) is motivated by that of

I- Kurtz [3]. The proofs are much different and do not require the

semigroup machinery of 13) and its predecessors. An extensive

development of a martingale approach to limit theorems for a class of

continuous parameter Markov processes appears in [12].

Theorem 1. Assume the conditions of Sections 2 and 3 on the-

martingale problem with operator A , and on aNC.,.) and

Let + X0 weakly as € + 0. For each N and f (,.) C 
~~~~

‘
, a dense

set in ~~~~ let there be a sequence {f C~l~l(.)}, where f C~N(.) ~I. ~~C,N and such that

i (4.1) p-u rn (f
€~N(.)  - f(XC~

?
~(.),.)] 0

I
£ (4.2) p-u rn (~€~NfC~N( )  - (.

~i + AN)f(X€
~
N(.),.)] 0.

e+0

I —--- - —— 
—

~~

I -
•

1 
—

— •—~~~~---—--~~~-



- 

— -

I
-6a- f

Then, if 1X t
’1’~(•), £ > 0} is t ight  in

DT[O ,..) for each N,X
5 ( .) converges weakly to X(•), the unique

solution to the martingale problem with initial condition X(0) X0. f
Let 

~~ 
denote the space of real valued continuous functions

on Rr, with compact support.

-p
I

F
1?
I -~ 

-

IT-

(1
L -
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1
I Theorem 2. For each I < ~ ° and N < suppose that

1 (4.3) u r n  TTh1 P{supIxC~N(t)I > 1(1 0 .1(400 €>() tCT

J
For each N and each f(.) c ~1j , a dense set in e0, let f~ ’

1
~(.)

be a sequence in such that (4.4)-(4.6) hold.

¶ (4.4) Urn P ( supI f E
~

N (t)  - f (X €
~
N(t))I > a} - 0, each a > 0, T< 00.€-‘~~ t<T

I For each T < co , let there be a random variable M~~
N (f) > 0 such

J that

J (4.5) u r n  sup P{M~~
?J(f)  > IC) = 0,I(.co C>0 -

where

[ 
(4.6) ~~~~~~~~~~~~~~ <

t<T

Then ( f (X C
~
N(.))}, each f(.) C ~~ and {X t

~
N(.)} are tight in

Dr [O ,00).

I The usefulness and relative ease of application of Theorems 1

and 2 will become apparent in the following sections.

~~~~~~g -~~ - •.‘ -- ——~~~~ •-~ • -•—.-—-•—•-—-- -
.-.•---

~
-• - - -  - -—— -

~
- --—.-— —- .•-- ——-- •- 

~~~
•—--- -

~ 
•-•

~ 

-•—- — —--•.

~
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~
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5. Assumptions for (3.1)

Two forms will  be dealt with.  The f i rs t  allows h~ , etc. to

have a rather arbitrary dependence on E , but uses

(Ala) For each € , {~~ } is stationary, bounded, $-mixing I. I
~~~ [7]) uniformly in € , with mixing rate sat

•
isfying £$~~

/2 
< 00

•

In many appl ications , it is desired to have {~~} unbounded (say
1.

Gaussian). Under additional restrictions on ~~~~~~~~ this can

be treated for particular cases of We also treat the case, quit..
important in practice~ where (Mb) holds in lieu of (Ala).

(Aib) Let the functions in (3.1) take the forms g~~(x ,~~) =

g~~(x)~~, h € (x ,~~) = h€ (x)
~~, 

and for some a > 0, c > 0, k€ (x ,
~
) =

+ 1) and the o(~ ) coeff icient of k~ is ~1+a •

Let there be a matrix L and a vector valued stationary Markov

process {~~ } such that = 0, all moments are fin ite and

L~~. Let {R
~

} be such that Rt > iEr
~~~+~

,iER
~lr0]i < R2j~~~

! I R t I ”2 < ~~~~. Suppose that there are {P~1 such that 
- -

and

(5.1) E(r
~~~ir0

) - E(
~& )t < ~~(l + I~0 l 2 ).

• For each a > 0, there is a 8 > 0 such that E (Ir1j a ,~ 0) <

(constant) R
0

1 

B + 1).

Remarks on (Ala b) follow (A8).

When Case (Aib) holds , the k € (x ,
~

) ,  etc., is to be rep laced by

k
~

(x) , etc., in (AZ) and (AS) below.

• • • — ~~ _____ : —— __-_  _~ -_-~~ — —-— —
~~~

— — - —
~~

- - - - -•-
~~~~ 

• - 
~~~~~~~~~~ 

—-— -—-
~~~ 

——-——•———-—— ———  —— —
~~
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I (A2) k6(.,.) is measurable, and uniformly bounded on bounded

I x-sets. ~~~~~~~~~~~~~~ and 1i€(.) are measurab le and continuous
in x for each ~. They are bounded on bounded x-sets uniformly

I in

-, (A 3) There is a continuous li( ) such that E~ ( .)  +

uniformly on bounded x-sets.

(A4 ) Eh~ (x ,F~~) 0, each n ,C,x.

L (AS) g~(.,F ) and h~ (- ,~ ) are (twice, once, resp .) continuously

differentiable for each F~,C; the der ivatives are bounded on bounded
x-sets, uniformly in F~,c .

(A6) There is a continuous function 
~~t~) such that

+ ~0(x)

• 1.
uniformly on bounded x-sets. There are continuous (and symmetric

w.l.o.g) a1~ (.) such that for each f(- ,) € ~~i,2

4 Eg~ (x , )f (x ,t)g~ (x ,~~) +

I 4 ~ a~
. (x)f

~ x 
(x ,t)

1. i,j :i 
~

uniformly on bounded x-sets. Thus, the second term on the left also

-
-
I

• t t
I~~ _ _ _
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converges uniformly to the above right hand side

minus 4 trace G0(x) fxx (x ,t).

(Al) There is a continuous j~(’) such that

00

+ j(x)

uniformly on bounded x-sets as c -‘ 0, where

rg1,~ ~~~~~~~~~~~~~ (x ,
~)1

g (x,~ ) I  1 r
C ,X 

~~~~~~~~~~~~~~~~~~~~~~~~~~

(A8) There is a unique solution (for each initial condition)

to the- martingale ~~~~~~~~~~ Dr [O ,~ ) ‘ with operator

A = 4 ~~~~1
a~~~

(x) a~~ ax~ 
+ ~~1

[~~ (x) + ~~~~~~~~~

where 1i~(.) and i~( )  are the ~th components of the vectors E(.)

and i(-), resp .

Remarks on (Ala ,b). We note first that (5.1) holds if {rn} ~~

a zero mean stationary Gaussian process with correlation Er0r~ =

and 
~ IR2.l ”2 < 00 . For notatbnal conven ience , we show it in the unit
2.

variance and scalar case. We can write - R2.r0 + 
~1.’ 

where

and are zero mean and independent. The sentence below (5.1)

obviously holds here. Also , equation (5,1) is implied by the
2 2 —2

calculations — 1 - +

• —• -—--~~~~~~~-~~~~-• ~~~~ -~~--.-— -~~~~- ---- •— ----- ~~~~~~
---—-— • - •

~~~~~ 
-.-- - - -
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- E~~ = + - 1.

I It can be seen from the method of proof that the theorem would

remain valid under weaker conditions than (Ala) (if the case (Alb)

J does not hold). Then the special structure of the functions in (3.1)

would need to be taken into account. The proof is given for the broad

I and standard cases (Ala ,b) ,  but its general outline would be followed
For example ,

in other cases. / there are impor tant examples in communication theory

(for example) where a system processes some wide-band and unbounded

• • noise input non-linearly . Somewhat analogous “continuous parameters”

techniques have been developed [8] to deal with a number of these importan

but special cases. Presumably , similar results are poss ible in the

discrete parameter case.

I. In the state-dependent noise case of Section 9, (Al) is not

used , and is replaced by a longer list of the (weaker) spec if ic

• 

. 

conditions which are actual ly used in the proof (of either

• • j Theorems 3 or 4). See also the comments on the Markov case in

Section 9, where the conditions on the continuity and differentiability

of the functions are weakened. We note also that the proofs can

readily be adapted to the traditional stochastic approximation case

where e is replaced by a sequence { € ~ } , wi th > 0 used at

1. itera te n , and ! — 0.

6. The Main Convergence Theorem

I. The same {f ~~~(.) } will be used to satisfy the requirements of both

Theorems 1 and 2. We use .~~- ~~~~~ and , given f ( • , )  € E, 
-

——-—- — •- •— — • ~~~~~~~ — -•—-—— _
~— —  — • —• ——•~— ——— —-•- —•———

~
- -- ~--•• — — •—•——-  —-- — •— •- •— — — — -  .L_•
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ctmstruct f C~ N ( .) via a discrete parameter analog of the method used C
[6] [9] 

• 

The (4) ~~~ {4,N} are defined by (3.1) and (3.2) resp.,

Theorem 3. Let + X0 weakly. Under (Ala or b) and

(A2)-(A8), (X~()) is tight in Dr [O ,00) and, as C + 0, conve r~~~
weakly to the diffusion determined by the solution to the martingale

:1 problem with the operator A of (A8), and ini tial condi tion L
- - 

• X0 — X(0). 
r 

E .
I

C-
I.
,

•./

B

U
11

9 
• - - - ~~~•• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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I Proof. Part 1. Fix f(.,.) C ~~
‘and fix N throughout the proof.

I 
First {f €~N ( ) }  satisfying (4.1), (4 .2)  will be found . In order to

- - simplify the notation in the proof the superscript N ~~ j~ ,N ~~~

~~ ~~
,N x~~’~( )  ~~~ XN(.) and the subscript N on hgN , ~~~~

will henceforth be dropped (in the proof only), but we always work here

- I with x~~
N,hCN , etc., only, and not with the original and h~ , etc.

-~ The proof under (Ala) will be given first. The simple modifications

- required under (Alb) will then be stated.

- ( Thus -we can suppose- that there is a constant such that
< IC~p IX 1~.J - Xl~ < and that 1h~t ,  ~~~ etc., (definitions

I (Ala or Alb) are bounded above by ‘~N~
1 The O(•), o(•) and o~(.) terms (with or without subscripts)
1 are uniform in all variables (except N, which is fixed throughout)

other than their arguments, unless otherwise stated. Evaluate

I e~
tf(X~~nc) * E f(X~~1,nC+€) 

- f(X~,n€)

- E (f(X~~1,nC+C) - f(X~~1,n€)] -

C
+ E (f (X~~1,nC) - f(X~,n€)]1 (6.1)

- CE~f t (x~+i, nC) + o(€) + f~ (X~,n€)E [CK~ (X~)

• I + v’~ ~~~~~~~~ +

I + .~~ ~~~~~~~~~~~~~~~~~~~~~~~ + o~(C).

Li _~~±~
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Part 2. Define - f(X ,n€) + f~ (n c) + f~ (nc) , where the

will be selected so that (4.1) and (4.2) hold. We now define f~(~) in

such a way that we “average out” the c~ dependent parts of (6.1). Define

g~ (x ,~ )g~ (x ,F )  and ~~(x) EG C (x ,~). Define f1(t) to be constant

on each [fl€ ,nC+c) and satisfy f~(n€) * f~ (X~,nc) , where

is defined by

f~ (x ,ne) = c E E~f’(x,€n)h~ (x ,~~)X

+ ~ ~~[E~ trace G€ (x ,
~~

)-
~
f
~~

(x ,nc) -

- trace

+ ,f~ ~~~~~~~~~~~~~~~~~~ = T~ + T~ + T~.

By the $-mixing and the facts that the expectations of all the

summands are zero , the first two terms are O(€), and the third

O( v’~) ,  uniformly in x. Thus, p-u rn f~ ( .)  = 0.
A

Now ca lcula te A~f~ (-) at t = n€ : [

E
I
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I € C C CCA f1(nc) * 

~
CEnf~

(Xn~
Cfl)hc(Xnp

~n
)

- 

I 
- E~trace GC (X

~
,
~~

)f x(X:,nC) +

I
+ trace

~ I 
- 

~~~ ~~~~~~~~~~~~~~~~

j (6.2) + c ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

•~ L __  

- f~ (X~,cn)h~X ,~~)] 
-

j + [a term similar to the last but coming from

T~ instead of from T~] +

+ /1

1 
- f~(X ,Cn)g~ (X ,~~)] .

The first, second and fourth terms in (6.2) cancel terms in
1. (6.1) (which is the reason for constructing f~(.) as we di•d).

F The 5th and 6th terms are 0(C) , as will now be shown. It is
- 

easy to see that the difference between these terms and their

~ L. values with £11 + C replaced by Cn in the is o(C).

The rest will be shown for the 5th term only. Define H
~
(x,En,

~
) -I. f,~(x ,~n)i~~(x,~). Then we must show that

(6~3) C !E [H
~

(X
~+i,

CnL
~ 

- H5(X~,Cn,~~)] — 0(C) . 
-
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By (the zeroeth order) Taylor’s formula with remainder, (6.3) equals

£
~~~~~ J0

E H
~,x

(X +s(X +i~
X) ,tn,E

~ )EX +i
_X ]ds

which equals O(€3~’2) by the $-mixing condition and the fact that

- X1~ <
~1f~ 

The ~~ term is treated similarly. Thus,

p-lim ~5th + 6th terms)/C — 0.
____ 

C+Q

The 7th and last term remains. Again, the 7th term differs by
o(€) from the term obtained by replacing Cn + C by Cn in the

~~~~~~~ 
apd we replace Cn + C by Cn there. Write K€ (x ,cn ,~) -

f~ (x ,Cn)g~ (x,~). Then by applying (the first order) Taylor’s formula -

with remainder, we can write the 7th term as

(6.4) o(€) +v 
~~~~~~~~~~~~~~~~~~ +

+

The contribution of the “sum of the integrals” component of (6.4) is
0(a 312) by the •-rnixing and the fact that E K~~~~(x ,Cn,~~) — 0.

Next , by collecting the terms of the first component of the sum in

(6.4) according to their power of C , we can write

(6.5) (6.4) — 0(t) + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-j
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t- I Part 3. Next, f2(.) will be introduced in a way which will

“average out” the second term on the right side of (6.5). Note that,I as £~~~O (and n~~~~t in f(.,.)) -

00

I 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-

converges uniformly to the quantity mentioned in the last sentence

I of (A6) plus f~ (x,t)j (x ) (j~(.) is defined in ( Al ) ) .  Recall that

I we have suppressed the affixes N, and that the g~ (x,~ ) ,  etc. used
in the proof is actually (in terms of the original g~ (x ,~ ) ,  etc.,
g
~
(x
~~
)q
~

(x) , etc. - -

Next, fC() is to be chosen. It is to be constant on eachI interval [nC,nC+e) and satisfy f~ (nc) - f~ (X~,na) ,  where f~(x,nc)

is defined by

f~(nt) - 4(X~,na) where f~(x,nC) is defined by

H E
4(x,na) — ~ 

~ .fl 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

- - - 

3Y the •-aixing and the fact that the centered suamand has zero

r expectation, lf~(x ,nt)I 0(t) uniformly in x. Thus, p-liaf(.) — 0.

L -

Next, evaluating Atf~(na) and using the stationarity of the

- _ _  — -_- _ • —•- — — — - - —--——- —— -•-——-
~

--•—- —• — ————--—-— -— .------—-—- •—— ————- — - — -— -•——-—•—- -— —•—- 
~

•— 
~~

—
~

••--‘— •- 
~
—.-.-•—-—•-•—--—-- -———--——- -— -—--—— -— — —--——•-- —- —

~~

-——

~~~ 
—- —
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~ 

- -
~~

-
~ 

-•3j~
_
•-~’ ~~~~~ 

• 
-

CAtf~(nC) — - C  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ C ~ E(f~(x,nC)g~(x, ))~g€ (x,~~)~ x—X~
(6.6)

- 
+ C ~ ~~ ~~~~~~~~~~~~~~~~~~~ 

- L -

n+l j.&+l 3 £

- Q~
(X ,nC,~~,~~)J,

where

Q~ (x ,na,~~,~2.~) ~~~~~~~~~~~~~~~~~~~~~~~ .1
1.

-  

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

By (Ala) and an argument using Taylor’s formula similar to

that used in connection with (6.3), we get that the last term of

(6.6) is 0(t ) . Also, the first term of (6.6) cancels the second

term on the right of (6.4).

Part 4. Recall the definition of ft (tn) given in Part 2.

Adding the results of Parts 1-3 , and deleting the terms of Atft( )

which cancel, yields (modulo the q
~(•) factors of 1~~, etc.)

_ _ _ _ _ _ _ _ _  
L 

- • •  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - - ——- —.-i~~~~~--••— —~~—•-



I
I

f (€n) * f(X~,nt) +

I ~~~~~~~ - ft(X
~ 
,nt) + f~ (X ,na)1~~(X

t)

(6.7) + 4 Eg~ (x ~~~~~~~~~~~~~~~ ‘
~~~‘x X ~

____  - 

+ ~~E(f’(X ,nc)g~(x ,~~~))~~g~~(X ‘O )I x_X C + o(e)/c.

L i
i~_ t

I

~  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-- --— --~~ --~ --- ---
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Then, by the convergences (A3), (A6), and (A7) all of (4.4), (4.5)

and (4.6) hold (the 14~
N (f)  are bounded here) ,’ yielding tightness; a1so~

(4.1), (4.2) hold, yielding the asserted weak convergence. 1.

_ _  

I-Part 5. Owing to the special form of the functions under~ (Aib), 
-

essentially the same proof can be used. The only problem is that the

O(~)-~~and o(.) terms are not uniform in 
~~~~ 

Let us examine some -

typical terms. Let denote conditioning on 
~~

, i < n. All the -
~~

0(e) below are uniform in all variables other than their argument . UThe essential part of the last term in the definition of f~ (Cn) is
(the 

~~ 
term is omitted) [

I v’~ Z E g~(x,~~) I” Ir’~ g~(x) ! LE~~~I < 
1-

~2.—n 2.—n -

~~~~~~~~~~~~~~~~~~

Next, examine the expression below (6.3). For sane c~ > 0, we can show
that it is botmded above by

Li
0(e 3/’2

) E E J  E~+1~2.l (l+I~~~
1)

- 0(€3/2)E~ I~ I(1~It I 1) ~

Also, by a careful use of iterated conditional expectations and (5.1), 
-

we can show that 11

A — - - -~ — - — ___~•__ ~ ____~
_ __•_ ~_•~~_ _ —• --__ •_ ..~~~~- .. _~~~~ — —.——.-•— - ~~~~~~~~~~~~~~~~~ 

——
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I ~f~ (n~t ) $ -  0(C) (l+Ir~.1I
2).

In fact, it can readily be shown that If~(nc)I and all the o(€)/€

I terms in AtECcng) which appeared in Parts 1 to 4 are of the form

LT(l+I ~~~ for some y > 0 and 5 ~ 0.. This , together with the

I fact that all moments exist implies (4.1)-(4.2).

Next, note that for each m ~ 1,

I P{ sup ~~~~~~~~~~ > u} < 
~~ 

P{
~~ I~~ I6

I TE,~~ t
6m €Yrn

- 

CUm

I
By letting yin > 1, (4.4) to (4.6) hold , Q.E.D.

I
7. Application to a Problem of Guess and Gillespie [11

In [1], the scalar problem (7.1) is treated

[
(7.1) — + f(S~) + (exp g(S,~) 

- l)X~ , X~ — X 0,

1 
under two different sets of conditions. The first being that

L for some constants u, ~2 < 0 and {r~ } such that ~ r~ < 00
,
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var S~ - cI2C, Cov(S~ ,S~ ) = ca2r~ and

satisfying the condition on in (Ala). Under their second

set of conditions the {S~ } are Gaussian , hence unbounded. Our

method works in either case.- We stick to the first case. Note

that Is~ I c K/I for some real K. Let f(),g( ) have continuous

third derivatives with f(0) - g(0 )  = 0, and put (7.1) into the

form (3.1) by expanding exp g() and f ( s ) .  First write Ii

C € C € t(7.2) ~~~ - + Ef(Sn) + E(exp g(S~~1) 
- l)X~ +

(f(S~) 
- Ef(S~ ))

+ /~ +

+ 
~~~exp (g(S~~1) - 1) - E(exp g(S~~~1) - ~~~~~~~ 

L
— 

n

Expanding g(.) and f(.) yields (the o(•) are uniform in all

variables but their argument).

(7.3) X~,1 — X + c[f5(0)~i .+ -~~~ f~~ (0)a2 + ug5 (O)X +

-
~~~ (g

55
(0) + g~(0))a

2X~] +

.

~~~ 

~~~~~~~~~~~~~~~~~~~~~ 

(S’-ES~ )X~ 
+

2 ((St)2 - E(St)2)Xt
+ (g

55
(0) + g5(0)) ‘~ + o(C).

X~ + cE(X~) + /1 g~(X ,~~) + €h
~
(X ,

~~
) + o(C) ,

_________ ___________________ —,-•—- —-—— ~~~~~ - ~— - — —----—--• ---—-
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where ~~ , E(.),g~(.) and h

~() are defined in the obvious manner.

Equation (7.3) is of the form (3.1) and the condithns of Theorem 3

I - hold. An immediate application of Theorem 3 yields that that the
{X t

(•)) are tight and that the weak limit is the unique diffusionI with the operator (the same result as (1])

I - 

2
A - [a1+a2x] ,~~~

_ + 
~~ (b

1+b2x) 2 !._~.

I a1 = 11f 5 (0) + -
~~~ 

c12 ( ( r12 -l) f (O)g (O) + f
55

(0) ]

I a2 - Mg5 (O) + ~~ cr2 [n 2 g~~(0) + g
55

(0) ]

I b1 — aTi f 5 (o) , b2 = ang
5

(0)

1 2 00

fl l + 2 E r . .
- 11—11— - -

~~~~~~~~~~~

[ Since our metho~i uoes not require an explicit construction of the
solution process (as essentially done in the proof in [1]), it is

equally applicable to vector-valued versions of (7.1), and seems to give
a bit more insight into the approximation process and the effects of

- 
~

- I. variations in the data.

1 8. Rate of Convergence for a Stochastic Approximation

Stochastic approximations of the form

-
~ 1. (8.1) ~~~ — X~ + €h(X ) +

Ii - •

k — .aasS~ L_L
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have numerous applications in sequential monte-carlo optimization in

control theory. In [10], (11], convergence and rate of convergence 
-

is treated via a rather direct method. We use the notation of this

paper rather than that of [10], [11]. Let h(•) and g(•,~) satisfy H

(AS) and assume Eg(x,~~) 0. Let x(t) 0 denote a globally

asymptotically stable solution to ± = h(x) (which we assume exists).

Thus, h(8) - 0. The properties of {X} for large n and small ~
are of interest. To invesitgate them, define U~ = (X~-0)//I. In

[11], it is shown under appropriate conditions that there is an N~ 
4- 00

as c 0 (unless g(x,~ ) = g(x) F~, in which case the process can be

centered so that N~ 0) such that {U , n > N~, c > 0} is tight.

Let us assume this tightness here and study the asymptotics of U ( )

where UC(t) = ~~~~~ ~~ [ne ,nC+t). The “tail” of U~(.) for small C contains ~
the rate of convergence informa tion for {X ), for small £ . By the

assumed tightness

lim TThI P{IX~- 0 I  > 6) — 0, each t~ > 0.
£+O fl+00 ‘I —

Now , by (8.1) we can write

(8.2) U~41 — U~~ + £[h
~

(0) + g~ (8,~~ ) ]U -

+ ,/~~ g(0,~~) + £ 3”2
B$G (X~~) ,  U~)U~ ,

where B0(.,.) is a matrix valued bilinear form, G() is a function

which is bounded on bounded x-sets and X~ a (X ,X~~1]. Next fix a I
weakly convergent subsequence of {U~~) with limit U0. Then under

p - —---—-
~

•-—--
~ 

-—-  j— --— --- _ —-•—---— --- —• -—- -- — -4~~-•-- -- ~~~~~~~ -
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I suitable conditions on {g(0,~~)}, Theorem 3 and the truncation method

I 
can be applied to get Theorem 2 of (10]; in particular, U(s), the weak

limit of (U t(.)} solves

I — 

1(8.3) dU — h
~
(e)ud t + R “2dB, U(0) = U

0

I
where R — lim £ Eg(0,~~ )g ’(0,~~) and BC.) is a standard Wiener1 process. This is one of the results of [11] and.was proved there by

3 solving (8.2) (inodula the B0-terms) and essentially constructing . the
- 

limit via weak convergence theory, a more arduous task than. merely using

I Theorem 3 (although the proof in [11] has its own intrinsic interest,

and the paper contains other interesting results).

If N
~ is chosen such that CN€ + as € + 0, then the weak

( limit U(•) of the original {Ut()} is the stationary solution to

r (8.3). The technique can also be applied to the rate of convergence

I. problem for stochastic approximations where the C in (8.1) is replaced

L by £~~ and + 0 as n • 00
, with Z C~~ - 00

, although we will not

pursue this. In this case , the interpolation intervals would be a
n,

I rather than the constant a.

£9. State Dependent Noise

[ Under broad conditions, the treatment for state dependent

noise is very similar to that given in Theorem 3, and only two cases
I will be discussed. For each a > 0, { * }  denotes a stationary

bounded sequence. If the {*~} are mutually independent, then the 

- -~~~ —~ -- ---- rn
__

—-—-_- ~~~~~~~~~~~~ ~~~~~—
_ - —_

~—~~ —, —---_
-- —-------~~~~~ — —— — - •

~~ 
-

~~~~~~~
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{~~~1,X~
} below are Markov ian and , as will be seen, the smoothness 

-

of Q
~~ 

in (A9) below can then be weakened. The scheme introduced

here covers some interesting cases, but it should be seen as being

typical of the possibilities, as indicated by the example in

Section 10, which uses a slightly different setup . We will need:
Li

(A9) There is a function Q~
(• ,.,.) such that -

Q~ (X ,~~~1,*~) where Q has continuous (uniformly in ~~~ 
L

bounded (x ,F )  sets) partial (x ,E) derivatives up to second order.

For each sphere SN there is a sphere SN ~ such that remains
I i

~~ ~~~ as long as X remains in SN. Li

It is now convenient to introduce some auxiliary processes

which will be used in the construction of the f~(). For each n,

define the processes Pn(x) - {~~(x) ,~ (x),~ ~
(x), £ > n} as

follows: - - 

,x

-
- 

C C £
— Q~

(x ,
~ t..1(x) ,*9)

(9.1) 
~~,~~

(x) Q
~,~~

(x ,
~~~1

(x),*) + Q
~~(

(x , _l (x),* )~~~l~~
(x), 1 _

i

- collection of second partial derivatives of the

components of ~~(x).

The initial conditions on P~(x) will be given below, when f~ ~~4 I
f~ are defined.

f

_ _ _ _ _ _ _  
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I
I -

- (AlO) For each x, there is a unique stationary process
- ~(x) - (

~~~
x),

~~~~
(x),

~~ ~~
(x) ,  

~ 
> 2.-> -‘.} satisfying (9.1).

I Th,e process is bounded (uni formly in bounded x-sets). and the
second (resp .. third) member is the x-derivatjve of the first (resp .,I second) member.

I Some sort of mixing condition on P~(x) is needed, as is some
condition on the rate of convergence of the dis~ ributions of the
“tails” of P~(x) to those of the stationary process V(x). A

I general type of mixing condition (as in (Al)) can be used, but we
prefer here to introduce the conditions in the weakest and most

I explicit form (All), (A12) that we can use. This is because, owing

I to the double requirement just mentioned, it seems simpler to do it

this way. There are ~~ny sets of sufficient conditions which iiçly (All) - (A12) ,
and there so~~ little point in restricting the applicability of the result. Note
that (A12) is the weakest condition which is usable in Theorem 3 in place of (Al) in

- J the non-state-~1~p~~~ent noise case. Below, the subscript x denotes a total
derivative; i.e., for a mnooth function q( .),

q(x,

~~

(x) )
~ 

— ~~(~,~~(x)) +

I Conditions (All) and (Al2) can be combined, but it is perhaps more

natural (for purposes of verification) to keep them as they are.

I ---- - -•- . -• --- - - • - 
_ 

- ---  - ----_
~

-- ---•- _ _

I, 
-• - ---

~ 
—-----—

~~~~~ 
-

~~~I - - - ~~~~ ~~- - —
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(All) concerns the rate of convergence of the distributions of 
—

P~(x) to those of P(x) for “non-stationary” initial conditions for

P~(x). while (A12) is more of a mixing condition, concerning the rate

of convergence ~~~~~~~~~~~~~~~~~~ ,F t+n xx (x)) -

~~~~~~~~~~~~~~~~~~~~~~~~~~~ + 0 for smooth q(.), as £ + ~~~.

(All) For each f(,-.) 
~ ‘~~o

’ , the sums (9.2), (9.3) converge

(absolutely) uniformly in x,t,n and in the initial conditions

,~
(x) ,

~~~~
(x) in bounded sets. Define

I-

F

I

F.
• . . ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •s _~~~~~~ _ -
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I H~~x -

I - 

~~~~~~~~~~~~~~~~~~~~~~~~~~

I I~ , & (x) - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1 (9.2) 
~ H~(x), ~ (H~(x))

2.—n X

1 (9.3) ! I t (x) , £ £ (I~ t (x) )
2.—n j—t+l ~~~~‘ £ n  j—L+l ~ x

I 
a 
_ _ _ _ _  

£ 
_ _ _ _

Let E~ denote conditioning on *~ , i < n , and on the initial1 condition of P~ (x), namely, 
~~~

(x),
~~~x

(x) ,
~~~~~

(x)). Owing to the

stationarity of {*~} we could set n 0 in (All).

(A12) Define (j  > £ ~ n)

a -

J
2.

(x) - E~f~ (x ,t)ha(x ,~~(x))

I. - 
1C (x) -

1. -

[ L
~

(x) - E~f~(x,t)g~ (x ,~~(x))

[ t 4,2.(x) —

- 

~~~~~~~~~~~ --- •~~~ —--- —----~~~ - - — -~~~~• - ---- --I - -•-~ - -~•~,~~~~~~~~~ -----— •— - ~— -~~--•-—-- - •---~~~---- • _______________
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The sums (9.4,5,6) below converge (absolutely) uniformly in w,t,x,n

and initial conditions for P (x) in bounded sets, for each -

f(.) a ,g;’ . I.
(9.4) ! J~ (x) ,  ~ (J~

(x))~, and also for K,L replacing J.
2.~n t n  -

~

(9.5) ! (L
~
(x))

~~ F
L n

(9.6) ! ~ MC (x), ~ ! (M~ (x) ) .

2.—n 3—1+1 ~~~~
‘ 2.—n j 2.+l ~~~~‘ 

X -

Remark. (All)-(A12) hold if {*~ } is mutually independent, -
•

~~ and g are multiplicative in ~ and there are t c~I < 1 and

twice continuously differentiable (in x)b( ,~) such that

+ b(X~~1,*~~1) ,  Eb (x ,q’) 0. F
£A_Note on the Markov Case. For the case where {~~} are

£ C
mutually independent for each a > 0, ~~~~~~~ is a Markov process

if is merely a Borel function. Then E in (A12) and in (9.7),

(9.8) below can be replaced by conditioning an ~~~~~~ only.
£ - -

• Instead of differentiating the functions in the sums in f1 and f2
with respect to x, as done in the proof of Theorem 3, it is only F
necessary that the E f~

(x ,an)h~(x ,~~ (x)),

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
etc., be differentiated. Often the

latter functions are smooth functions of x, uniformly for ~~
‘ I • i
n

bounded sets - even for not satisfying the smoothness
required by (A9). In that case, the proof of Theorem 3 can be carried F
out-but with derivatives of the conditional expectations - :
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I and expectations of the functions being taken in lieu of the

derivatives of the functions themselves. Of course, the same can be

said for the case of Theorem 3, if {~~ ,X } is l4arkov there.

To be more~~ecifjc, In (9.2)-(9.6) replace (with the exception

of the 1
1

(x) and M~~(x) terms) the E(.)~ and E (.)
~ 

by

( (E(.))2. and C13i~
(
~

)) x , resp. Replace M ,2.(x) and 1 ,2.(x) by,

resp.,

[ M~,2.(x) -

- 
• i I
~ [ 

I
1
(x) —

-

[ where denotes conditioning on the Markov state at time 1,

whatever the process. Finally, replace the summand in (A7) by

£E(E~g~ (x,c2.(x)))~ g~ (x,j0(x)).

- ( Then, assuming that the above derivatives and conditional expectations
and expectations are well defined, Theorem 4 continues to hold.

F I~uiu.A. Assum. - (A-2) .(A12) ,  where in c M) ,  cA6), cAl) ,
L {r~(x) r~~l~c~~ {~~} and the deriVative in (Al) is a total

S
I - -~~~~• -~~~~~~~.-~~~~.-- -—•- —— —- —~--SS-------~--S-• —~~~~

- — —5---- — —i—---- S~
____________-_-____ — - — -S
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derivative ’. Then the conclusion of Theorem 3 continues to hold.

Proof. The proof is the same as that of Theorem 3. The only

change is that we use the following for the 4. First,
f1(ne) — f1(X~,nC) where, analogously to the case in Theorem 3,

I
4(x,na) - /~ !Ef ~ (x ,nC)g~ (x ,~~ (x)) +

(9.7) + C ~ E~f~ (x ,an)ii~ (x ,~~ (x)) 
1!

+ .
~~ !(E g~ (x ,~~ (x))f (x,an)g (x ,~~ (x) ) F

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

-

Uand the initial condition for {~~ (X~), 2. > n},is ~1~(X~) — ~~~~~. 
-

Next, we use 4(na) - f~ (X ,na), where Ii

f~ (x ,na) — C ~ EE
t(f’(x ne)g (x~~~(x)))Ig (x~~~(x) )

2.—n j—2.+l ~ 3 X

(9.8) 
£ h

- E(f~ (x ,ne)g~ (x ,r
3 

(x)))~g~(x,r2.(x))J

and with initial conditions

in cAl) is replaèed by gC x (x ,t
~

(x)) F
+ ~~~~~~~~~~~~~~~~~~~~~
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~~ ( X )  — 
~~~~~ ~~~~~~~~~~~~~~~~~~~ 

—

The forms of (~~(x),ç~(x)} and ~~~~ are chosen so that, by

I following the method of Theorem 3, we get the correct cancellations

and the centering about the correct - and intuitively reasonable -

I “mean-values” which make up the operator of the limit process.

10. An Example

i
~I A simple but interesting example will be given. It does not

- - I quite fit the format of Theorem 4, but can be handled by a very

similar development, and it suggests some interesting possibilities,
I as well as indicating the potential power of the general method of

~ I 
the paper. We consider a very simple form of the Kiefer-Wolfowitz

stochastic approximation for minimizing a function q(x). Here
- I q(x) - -

~~
. x ’Kx , K positive definite and symmetric, and it is assumed

that the derivative plus noise is observed, and the coefficient

sequence is constant; i.e., the iterate sequence is

(10.1) y
fl+l — - aE K Y ~ +*~ ], 

-

where is the nth estimate of the minimum value 0 of q(x)

~ I and the (*~} are mutually independent. It is occasionally suggested

r that, if observations at successive parameter points were averaged
L in some way , then convergence would be improved.

[ 
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This question will now be investigated. A more general form for

q(•) could be used, but we stick to the simple case in order to

illustrate the main point as efficiently as possible.

- Instead of 110,1), we deal with (10.2), where the successive

observations are geometrically weighted for use in the iteration 
- 

I

I-

F

L~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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I — - ~~~ ~ ~~ < ~~ , ~ >

- 

- 

(10.2)
- - 

- I - + 8[KXC+* ], {*n} bounded, identically

distributed.

I If a — 0, then (10.2) reduces to (10.1). For a > 0, there is some

averaging. Define XC(.) as in Section 1. The conditions of

I Theorem 4 all hold and by Theorem 4, {XC()} is tight and converges
(in Dr (O ,~ ) ,  for some integer r) weakly to the solution of

Ic —

Next, let us center {X~} about its “mean value” and examine
C A C  ~ C Cthe rate of convergence. Define ~~~~J1

,X~ PF 11
, by

At  A C  A
C A C

1 X~41 - Xn 
- 

4 , X0 X0,
11 

- + 8K1~, ~~ -

I 
—

~~ — E  •
~~ -aXn+1 - X~~ - 

~~~ 
= 0,

- 

~~n-l 
+ 

~(KX~+* ), ~~~ - 0 ,

£ * t  C £ Cthen X~ - + X~. Let U~ - X~//~. Then

:~~~[ 
U
~+l

U v ’
~~~~, U~~- 0 ,

• ( 10 .3 )  —a —
~~- a~ 1+8(K/~ tJ +*~).

- Now define {~~ (u)} by 

—~~~~~~~~~~ - -_— - - - - - -~~~-~~~~~--S~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ —-~~~~~~~ 
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(10.4) ~~(u) — a~~_1 (u) + 
~(Kv 1

~ u+*2.), 2. > n, each n ,

where the initial conditions are assigned at n as they were for

£ > n} in Theorem 4. We analyze (10.3), which differs from

the situation in Theorem 4 owing to the J~~~ in the ~~ equation and

• the fact that~ E~~(x) is not zero unless u = 0 (the bar 
- denotes

• the associated stationary process). Nevertheless, an almost identical

development to that of Therems 3 or 4 can be carried out by following

the technique of Theorem 3 and introducing ~~~~ with the correct

centering , very similar to what was done in the discussion concerning - 
-

-

Theorem 4. We simply state the result in the scalar case. {ut(.)} is

tight in D (0 ,~) and converges weakly to the diffusion U():

dU — Udt + CdW , U(0)  = 0 ,

(10.5)

c2 - 
(1 cL 2

) 
(1 +

where ~
2 

— E*~~. If  {U ~~, £ > 0, n > 0) is tight, then so is
{U t

(tt+.) £ > 0) for any sequence t~ 
+ 

~, and the weak limi t of the

last sequence is the stationary solution to (10.5).

The stationary variance of (10.5) is C2(l-cz)/2~K or

028/2K(1-a).

If 8 • cl-a) then the mean rate of convergence as well as the asymptotic

normalized variance do not depend on U~ For smaller 8, the mean
rate is l~~x, the rate of d~-creaso of the covariance of U() slower, but the

‘Here, ga (u ,~.) 
. 

~~~
.

-
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- - I
asymptotic normalized variance is smaller. So there is no clear

advantage to averaging, al though other schemes may yield differen t

results. The format developed in this paper seems to be quite
-p suitable for the analysis of such problems.

;- I f--- --
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